UncertaintyVisualizer

Authors: Thomas Viard, Guillaume Caumon and Bruno Lévy

Disclaimer UncertaintyVisualizer is a stand-alone application developed by the Gocad
Research Group; it reproduces some of the features available in the UncertaintyViewer plugin. The
source code, executables and other materials attached to the UncertaintyVisualizer package are
provided “as-is” and without warranty of any kind, express, implied or otherwise, including without
limitation, any warranty of merchantability or fitness for purpose. In no event shall the authors nor
the Gocad Research Group be liable for any special, incidental, indirect or consequential damages of
any kind, or any damages whatsoever resulting from loss of use, data or profits, whether or not
advised of the possibility of damage, and on any theory of liability, arising out of or in connection
with the use or performance of this software.

The source code, executables and other materials attached to the UncertaintyVisualizer package can
be used and redistributed without explicit permission, as long as the following conditions are met:
- Redistribution of the source code, executables and other materials attached to the
UncertaintyVisualizer package must retain the above disclaimer and this list of conditions;
- Redistribution of the source code must retain the mention: “This software contains source
code provided by NVIDIA corporation”;
- Publications or derived work using this software must acknowledge the Gocad Research
Group and the authors;
- The name of the contributors to this software may not be used to endorse or promote
products derived from this software without specific prior written permission.

Requirements Because UncertaintyVisualizer exploits the programmability of graphic
processing units (GPUs), it will only run on programmable graphics cards (i.e. on a GeForce 4 Series or
more advanced).

Introduction UncertaintyVisualizer is a stand-alone application which aims at corendering
a petrophysical property (also referred to as the “primary variable”) together with its associated
uncertainty, along a voxel-based slice of a geological volume. Two different uncertainty visualization
methods are available, which respectively map uncertainty to either texture pattern or blur intensity.
Input files are based on an extension of the GSLIB format, described below, so that this software can
be used on custom datasets. The source code is provided with documentation, so that it can be
adapted for specific needs.

General user commands The scene can be moved with the mouse: a left click will
trigger scene rotation, a middle click will move the whole scene across the view plane, and a right
click will change the zoom level.

By default, no uncertainty is displayed. Texture-based uncertainty visualization can be activated by
pressing key ‘t’ and blur-based visualization with key ‘b’. In texture mode, the keys ‘+’and ‘-’ can be
used to increase or decrease the maximum texture intensity. In blur mode, the keys ‘+’and ‘-’ can be
used to increase or decrease the Gaussian blur radius. In both uncertainty visualization modes, the
key ‘r’ can be used to reverse the intensity function I(u), which acts as a filter on uncertainty values.

Properties used as the primary variable and the uncertainty can be changed at will, respectively by
pressing key ‘v’ and key ‘u’.

Texture-based uncertainty visualization Our texture-based visualization
algorithm maps the primary variable to the background slice color, and associated uncertainty to the
intensity of a “fabric” texture pattern.

By default, textured areas correspond to low-uncertainty areas. This behavior can be changed by
reversing the intensity function I(u).

If the uncertainty display interferes with the background color-coded primary variable, the maximum
texture intensity can be decreased to make the texture pattern less visible.

Blur-based uncertainty visualization Our blur-based visualization algorithm maps
uncertainty to the blending ratio between a sharp and a fully-blurred display of the background
color-coded primary variable.

By default, blurred areas correspond to high-uncertainty areas. This behavior can be changed by
reversing the intensity function I(u), although it is much more intuitive to associate blur with poorly
known areas.

If the uncertainty display interferes with the display of the primary variable, the radius of the
Gaussian can be decreased to make blur less distractive.

Note: if the blur radius is increased, the display will strongly slow down due to a large number of

texture access and exponential function calls at every frame. In practice, the blurred display should

be precomputed once, in order to keep the display interactive. We did not implement this feature to

keep the source code of UncertaintyVisualizer as simple as possible.

Input data UncertaintyVisualizer takes extended GSLIB files as an input for the
petrophysical properties and their associated uncertainty, which is assumed to be one scalar value.

The GSLIB file “data.gslib” is read when UncertaintyVisualizer; it can be found in the “data” folder. If

you want to use UncertaintyVisualizer with your own data, you can overwrite the content of this file.

Caution, your custom data should be in the following format:

1.

2.
3.
4.

The first line should contain the number of voxels UMax along the U axis, followed by the
number of voxels VMax along the V axis. These two figures should be integers, and must be
separated by a space or tabulation. This requirement is the main difference with the
standard GSLIB file format.

The second line should contain the number of properties NbProps.

The NbProps next lines should contain the names of the properties.

The UMax*VMax next lines should contain the property values, in the same order as
property names were given, separated by spaces or tabulations. The property values should
be ordered so that first property values line is {U=0,V=0}, second is {U=0,V=1}, and so on until
{U=0,V=VMax-1}. The VMax+1" line will then be {U=1,V=0}, etc.

The “data.gslib” file provides an example of what the expected file format looks like.

A few comments on the file format requirements / UncertaintyVisualizer limitations:

>

A\

Even if ratio UMax/VMax is different from 1, the petrophysical properties will be rendered
on a square. This will cause distortions in the display (data should be visually stretched over
the larger axis).

UncertaintyVisualizer currently does not support GSLIB files across volumes, i.e. GSLIB files
with more than one voxel along the W axis. If such files are used, the results are
unpredictable.

The property names should not contain any space or tabulation. If they do, only the first part
of the name will be kept.

Up to four properties can be used. All properties after the fourth one will be ignored.

The property values should be normalized between 0 and 1, because the range of the
colormap and texture/blur intensity is expected to be [0,1]. If property values are below 0 or
above 1, they will be clamped to either 0 or 1.

Source code design The source code of UncertaintyVisualizer is divided into two different

parts:

(i)

Some CPU code that is responsible for setting up the GUI, loading the data and sending
appropriate input to the graphics card through the OpenGL API. The CPU code is written
in a combination of C and C++.

(ii) Some GPU code that runs directly in parallel on the graphics card, which is responsible
for computing the color of every single rendered pixel. This GPU code is written in the
OpenGL Shading Language (aka GLSL). This source code is stored in char arrays; it can be
compiled and linked at run-time by the pilot of the graphics card.

