
                

PhD Proposal: Three-dimensional kinematic model 

of fault networks. 
 

Faults are a significant source of geometric and physical complexity in the subsurface. Therefore, the 

determination of faults parameters is very important for many applications in hydrogeology, geothermal 

resources, geotechnical engineering, tectonics, seismic hazard, etc. However, the available subsurface data are 

often insufficient to precisely characterize the geometry and the displacement of faults: limited resolution and 

observation gaps then need to be complemented by conceptual models to reduce uncertainty.  

At metric to kilometric scale, 3D geomodeling methods generally describe faults as zero thickness surfaces. 

Once the geometry of these surfaces is obtained, interpolation between the surrounding observations is 

performed to obtain the geometric offset across the fault surface (WELLMANN & CAUMON, 2018). Whereas 

this method provides satisfactory results when observations are dense and accurate, it may produce 

inconsistent structural geometries in the presence of noise, errors, and large data gaps. Moreover, 

interpolation only provides the final view on the fault system and does not directly provide the displacement 

field, so the rock juxtaposition across a fault relies on simplifying assumptions (e.g., dip slip), the rock 

deformation in the flanking structures of the faults cannot be determined directly, and, more critically, the 

mechanical compatibility of the model cannot be assessed directly.  

To address these challenges, several authors have proposed to validate the interpolated structures a posteriori 

using structural restoration (KERR, WHITE & BRUN, 1993; ROUBY ET AL., 2002), but the process is generally 

time-consuming. In seismology, the classical methods used to invert for source mechanisms are based on linear 

elastic assumptions which don’t hold at geological time scales, and they neglect stress interactions and 

contacts between fractures (SEGALL & POLLARD, 1980). Alternatively, some authors have proposed parametric 

kinematic models to describe the near-field displacement around isolated faults (GEORGSEN ET AL., 2012; 

GODEFROY ET AL., 2018; GROSE ET AL., 2021; LAURENT ET AL., 2013; WALSH & WATTERSON, 1987). These 

models have also shown a significant value for generating training data for machine learningbased seismic 

interpretation (MERRIFIELD ET AL., 2022; WU ET AL., 2020). However, faults are seldom isolated, and it has 

been known for a long time that slip vectors show more complex behavior in areas of fault interactions, both 

in terms of orientation (ROBERTS, 1996) and displacement magnitude (WILLEMSE, POLLARD & AYDIN, 1996). 

Moreover, the existing parametric slip models do not integrate geometric constraints in the presence of branch 

lines. An additional difficulty comes from the interplay between fault activity and deposition, which can 

generate sharp variations of displacement fields orthogonally to the stratigraphy.  

The overall objective of this PhD project is to advance the state of the art in the modeling of displacement 

associated to fault networks. The idea is to define a small number of geometric parameters that can describe 

the near-field discontinuous displacement of a fault network, while accounting for branch lines and 

interactions. After developing the numerical displacement model, the method will be tested on reference 

interpretations from high resolution 3D seismic data sets. After this first validation, the proposed 

parameterization can be considered for generating training data for AI-based seismic interpretation. In this 

context, an interesting question will be to measure the ability of such an extended training data base to 

improve the interpretation in structurally complex areas and compared to state of the art machine learning. 

Another pathway will be to jointly infer fault network location and slip parameters from subsurface data. This 

may be tested by extending existing inverse methods for isolated faults to account for interpretation picks 

(GODEFROY ET AL., 2018) or full waveform inversion results (RUGGIERO, CUPILLARD & CAUMON, 2024).  

 



                

Advisors: Guillaume Caumon (Université de Lorraine) and Gautier Laurent (Université d’Orléans).  

Starting date: From September 2025  

Requirements  

The candidate should hold a MSc in quantitative Earth Sciences, Geophysics, Physics, Geomechanics, Applied 

Mathematics or Computer Science. He/she is passionate about science and has solid scientific writing skills. An 

experience in computer programming and a strong command of English language are required. French 

language is preferable, but not necessary. 

How to apply 

Application files must be sent to jobs@ring-team.org  before Mai 31, 2025, and must include:  

− A cover letter,  

− A CV, including contact information for two or more referees,  

− A research outcome (Master thesis or paper) written by the candidate,  

− An official transcript of grades.  

Location 

Nancy (France), a UNESCO World Heritage city with a vibrant student life and a rich cultural agenda, only 90 

minutes away from Paris, Luxembourg and Strasbourg. 

Working environment 

The successful candidate will work in the RING Team, a pluridisciplinary and diverse group of 12-15 

researchers and graduate students working at the interface of geoscience, computer science and applied 

mathematics. The team is part of École Nationale Supérieure de Géologie in the GeoRessources laboratory, a 

research lab of Université de Lorraine and CNRS. The research team is driven by passion for developing 

computer-based methods and theories for geological and geophysical modeling, serving the geoscience 

community to address scientific and natural resource management challenges. 
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