Formulation continue du problème de modélisation implicite de structures géologiques discrétisée avec des méthodes de réduction de maillage
Julien Renaudeau. ( 2019 )
Universit{\'e} de Lorraine
Abstract
La modélisation structurale consiste à approximer les structures géologiques du sous-sol en un modèle numérique afin d'en visualiser la géométrie et d'y effectuer des calculs d'estimation et de prédiction. L'approche implicite de la modélisation structurale utilise des données de terrain interprétées pour construire une fonction volumétrique sur le domaine d'étude qui représente la géologie. Cette fonction doit honorer les observations, interpoler entre ces dernières, et extrapoler dans les zones sous-échantillonnées tout en respectant les concepts géologiques. Les méthodes actuelles portent cette interpolation soit sur les données, soit sur un maillage. Ensuite, le problème de modélisation est posé selon la discrétisation choisie : par krigeage dual sur les points de donnée ou en définissant un critère de rugosité sur les éléments du maillage. Dans cette thèse, nous proposons une formulation continue de la modélisation structurale par méthodes implicites. Cette dernière consiste à minimiser une somme de fonctionnelles arbitraires. Les contraintes de donnée sont imposées avec des fonctionnelles discrètes, et l'interpolation est contrôlée par des fonctionnelles continues. Cette approche permet de (i) développer des liens entre les méthodes existantes, (ii) suggérer de nouvelles discrétisations d'un même problème de modélisation, et (iii) modifier le problème de modélisation pour mieux honorer certains cas géologiques sans dépendre de la discrétisation. Nous portons également une attention particulière à la gestion des discontinuités telles que les failles et les discordances. Les méthodes existantes nécessitent soit la création de zones volumétriques avec des géométries complexes, soit la génération d'un maillage volumétrique dont les éléments sont conformes aux surfaces de discontinuité. Nous montrons, en explorant des méthodes sans maillage locales et des concepts de réduction de maillage, qu'il est possible d'assurer l'interpolation des structures tout en réduisant les contraintes liées à la gestion des discontinuités. Deux discrétisations de notre problème de minimisation sont suggérées : l'une utilise les moindres carrés glissants avec des critères optiques pour la gestion des discontinuités, et l'autre utilise des fonctions issues de la méthode des éléments finis avec le concept de nœuds fantômes pour les discontinuités. Une étude de sensibilité et une comparaison des deux méthodes sont proposées en 2D, ainsi que quelques exemples en 3D. Les méthodes développées dans cette thèse ont un grand impact en termes d'efficacité numérique et de gestion de cas géologiques complexes. Par exemple, il est montré que notre problème de minimisation au sens large apporte plusieurs solutions pour la gestion de cas de plis sous-échantillonnés et de variations d'épaisseur dans les couches stratigraphiques. D'autres applications sont également présentées tels que la modélisation d'enveloppe de sel et la restauration mécanique.
Download / Links
BibTeX Reference
@phdthesis{renaudeau:tel-02331238, abstract = {La modélisation structurale consiste à approximer les structures géologiques du sous-sol en un modèle numérique afin d'en visualiser la géométrie et d'y effectuer des calculs d'estimation et de prédiction. L'approche implicite de la modélisation structurale utilise des données de terrain interprétées pour construire une fonction volumétrique sur le domaine d'étude qui représente la géologie. Cette fonction doit honorer les observations, interpoler entre ces dernières, et extrapoler dans les zones sous-échantillonnées tout en respectant les concepts géologiques. Les méthodes actuelles portent cette interpolation soit sur les données, soit sur un maillage. Ensuite, le problème de modélisation est posé selon la discrétisation choisie : par krigeage dual sur les points de donnée ou en définissant un critère de rugosité sur les éléments du maillage. Dans cette thèse, nous proposons une formulation continue de la modélisation structurale par méthodes implicites. Cette dernière consiste à minimiser une somme de fonctionnelles arbitraires. Les contraintes de donnée sont imposées avec des fonctionnelles discrètes, et l'interpolation est contrôlée par des fonctionnelles continues. Cette approche permet de (i) développer des liens entre les méthodes existantes, (ii) suggérer de nouvelles discrétisations d'un même problème de modélisation, et (iii) modifier le problème de modélisation pour mieux honorer certains cas géologiques sans dépendre de la discrétisation. Nous portons également une attention particulière à la gestion des discontinuités telles que les failles et les discordances. Les méthodes existantes nécessitent soit la création de zones volumétriques avec des géométries complexes, soit la génération d'un maillage volumétrique dont les éléments sont conformes aux surfaces de discontinuité. Nous montrons, en explorant des méthodes sans maillage locales et des concepts de réduction de maillage, qu'il est possible d'assurer l'interpolation des structures tout en réduisant les contraintes liées à la gestion des discontinuités. Deux discrétisations de notre problème de minimisation sont suggérées : l'une utilise les moindres carrés glissants avec des critères optiques pour la gestion des discontinuités, et l'autre utilise des fonctions issues de la méthode des éléments finis avec le concept de nœuds fantômes pour les discontinuités. Une étude de sensibilité et une comparaison des deux méthodes sont proposées en 2D, ainsi que quelques exemples en 3D. Les méthodes développées dans cette thèse ont un grand impact en termes d'efficacité numérique et de gestion de cas géologiques complexes. Par exemple, il est montré que notre problème de minimisation au sens large apporte plusieurs solutions pour la gestion de cas de plis sous-échantillonnés et de variations d'épaisseur dans les couches stratigraphiques. D'autres applications sont également présentées tels que la modélisation d'enveloppe de sel et la restauration mécanique.}, author = {Renaudeau, Julien}, hal_id = {tel-02331238}, hal_version = {v1}, keywords = {Numerical methods ; Implicit modeling ; Continuous equations ; Meshless methods ; M{\'e}thodes num{\'e}riques ; Mod{\'e}lisation implicite ; {\'E}quations continues ; M{\'e}thodes sans maillage}, month = {April}, number = {2019LORR0075}, pdf = {https://hal.univ-lorraine.fr/tel-02331238v1/file/DDOC_T_2019_0075_RENAUDEAU.pdf}, school = {{Universit{\'e} de Lorraine}}, title = {{Formulation continue du probl{\`e}me de mod{\'e}lisation implicite de structures g{\'e}ologiques discr{\'e}tis{\'e}e avec des m{\'e}thodes de r{\'e}duction de maillage}}, type = {Theses}, url = {https://hal.univ-lorraine.fr/tel-02331238}, year = {2019} }