Anisotropic Surface Mesh Generation: Scaling-up with VORPALINE (Voronoi Parallel Linear Enumeration).

Bruno Levy. ( 2013 )
in: Proc. 33rd Gocad Meeting, Nancy

Abstract

This paper introduces a new method for anisotropic surface meshing. From an input polygonal mesh and a specified number of vertices, the method generates a curvature-adapted mesh. The main idea consists in transforming the 3d anisotropic space into a higher dimensional isotropic space (typically 6d or larger). In this high dimensional space, the mesh is optimized by computing a Centroidal Voronoi Tessellation (CVT), i.e. the minimizer of a C 2 objective function that depends on the coordinates at the vertices (quantization noise power). Optimizing this objective function requires to compute the intersection between the (higher dimensional) Voronoi cells and the surface (Restricted Voronoi Diagram). The method overcomes the d-factorial cost of computing a Voronoi diagram of dimension d by directly computing the restricted Voronoi cells with a new algorithm that can be easily parallelized (Vorpaline: Voronoi Parallel Linear Enumeration). The method is demonstrated with several examples comprising CAD and scanned meshes.

Download / Links

BibTeX Reference

@inproceedings{LevyGM2013,
 abstract = { This paper introduces a new method for anisotropic surface meshing. From an input polygonal mesh and a specified number of vertices, the method generates a curvature-adapted mesh. The main idea consists in transforming the 3d anisotropic space into a higher dimensional isotropic space (typically 6d or larger). In this high dimensional space, the mesh is optimized by computing a Centroidal Voronoi Tessellation (CVT), i.e. the minimizer of a C 2 objective function that depends on the coordinates at the vertices (quantization noise power). Optimizing this objective function requires to compute the intersection between the (higher dimensional) Voronoi cells and the surface (Restricted Voronoi Diagram). The method overcomes the d-factorial cost of computing a Voronoi diagram of dimension d by directly computing the restricted Voronoi cells with a new algorithm that can be easily parallelized (Vorpaline: Voronoi Parallel Linear Enumeration). The method is demonstrated with several examples comprising CAD and scanned meshes. },
 author = { Levy, Bruno },
 booktitle = { Proc. 33rd Gocad Meeting, Nancy },
 title = { Anisotropic Surface Mesh Generation: Scaling-up with VORPALINE (Voronoi Parallel Linear Enumeration). },
 year = { 2013 }
}