Speaker(s): Antoine Mazuyer

Date: Thursday 13th May 2020 - 11:00 am

Abstract:

Geological sequestration of CO2 in large quantity is one of the most promising methods to curb global warming. To achieve this goal, large volumes of CO2 have to be permanently stored in geological reservoirs. Modeling and simulating CO2 sequestration is a multi-disciplinary effort involving a large spectrum of physical and chemical phenomena. We focus this work on the generation of 3D structural models and meshes to support coupled numerical simulations with flow and poromechanical equations. Building such models and meshes is challenging as the poromechanical changes to stresses and strains are not limited to reservoir layers where CO2 is stored, but also in the surrounding formations (overburden, underburden, sides). Modeling surrounding rock formations is necessary to capture fault reactivation, uplifting and caprock failure issues during the injection. In this work, we propose guidelines to build such models using implicit and explicit modeling strategies and meshes. This work is supported by real field data from a depleted gas field in the Gulf of Mexico state water. This field is considered as a faithful analog to CO2 sequestration reservoirs in the regional Miocene sands.