Speaker: Janne T. Yliharyu

Date: Friday 22nd of March 2024, 1:15pm.

Abstract:

In many applications, it is essential to know what happens to the properties of a material if the water content is changed, i.e., if the material is wetted or dried [1]. One such example is bentonite clay, which is planned to be used as a buffer material in the geological final disposal of radioactive waste. Safety assessment of the multibarrier system, including the bentonite buffer, requires modelling and investigating the release barrier over long periods. These models benefit from information on the local water content of the bentonite layer. To facilitate modelling, we have developed X-ray tomographic methods to measure the time evolution of the local water content and applied the methods to bentonite clay samples in various conditions. This approach provides direct experimental data on the wetting and hydromechanical behavior of small-scale compacted bentonite samples, which can be used to validate material models. We present two approaches for measuring local water content. The first one is based on comparing successive tomographic images obtained during the wetting of the bentonite clay sample. This method involves measurement of the internal deformations of the sample, which is vital because, in general, materials will deform if the water content is changed. The second method is based on dual-energy imaging. Energy information is utilized to obtain quantitative information about the spatial distributions of bentonite and water. In both cases, we have applied a nonstandard beam hardening correction and careful calibrations of the mass attenuation coefficients. The deformation measurement method has been applied extensively to bentonite samples with different dry densities. Also, the influence of temperature on water transport has been studied. Based on the observations, the evolution of the water distribution is qualitatively reminiscent of diffusive transport. The first results from the dual-energy CT are promising, but further studies and validations are required before more profound conclusions can be drawn. These results suggest that deformation measurement enables more accurate water content estimates, but dual-energy CT can be applied in a broader range of material combinations.

Speaker: Claire Bossennec

Date: Thursday 21st of March 2024, 1:15pm.

Abstract:

La caractérisation et la modélisation précises des milieux géologiques hétérogènes sont essentielles pour optimiser l'exploration et l'exploitation des ressources énergétiques, telles que la géothermie, le stockage thermique en profondeur et les processus de co-production d'énergie (lithium, hydrocarbures). Cette présentation propose une approche intégrant des analyses multi-échelles et multi-méthodes, depuis l'observation de terrain jusqu'à la modélisation numérique, incluant également des expérimentations de laboratoire. La combinaison avec de l’imagerie géophysique et l’analyse des propriétés thermo-physiques et pétrophysiques permet de couvrir un spectre allant du microscopique au macroscopique, et d'englober des techniques avancées pour examiner en détail les structures et mécanismes régissant les transferts de chaleur et de matière dans des milieux géologiques complexes à différentes échelles temporelles. La caractérisation des propriétés de transfert des grès et de leur évolution par diagénèse et déformation constitue la base des travaux de thèse et sont une première étape des travaux présentés.

Les études de cas variées illustrant l’approche développée, issues de projets tels que INTERREG DGE-ROLLOUT, MEET, SKEWS, PotAMMO, PUSH-IT et AMPEDEK, complètent et explorent des contextes géologiques divers (sédimentaires, volcano-sédimentaires et cristallins), permettant une meilleure compréhension de la complexité et de l'hétérogénéité des formations géologiques visées. Ceci facilite une évaluation plus précise du potentiel géothermique et de stockage. Les résultats obtenus jouent également un rôle clé dans l'amélioration de la production d'énergie géothermique, le perfectionnement des stratégies de stockage thermique et l'évaluation des opportunités de co-production d'énergie, tout en respectant les contraintes environnementales et économiques.

L’ensemble des travaux souligne l'importance vitale d'une analyse détaillée des propriétés et processus régissant les milieux géologiques pour un développement responsable des ressources énergétiques souterraines. En ouvrant la voie vers des stratégies de gestion énergétique plus efficaces, ces travaux proposent plusieurs innovations concrètes pour répondre aux défis de la transition énergétique et à la nécessité d'une sécurité énergétique renforcée par une production plus locale et intégrée.

Speaker: Charlie Garayt

Date: Thursday 14th of March 2024, 1:15pm.

Abstract:

This work aims to simulate 2D structural geological models, or geomodels, that respect given knowledge and data. By definition, geomodeling is an ill-posed problem due to the limited quantity and quality of available data. Current geomodeling methods struggle to both characterize uncertainties and produce realistic geomodels.To achieve this goal, a deep generative adversarial network (GAN) has been implemented. GANs, which are usually used in image generation, need a large training dataset. For instance the ImageNet dataset contains more than 1.5 million images. In geomodeling, such a large real dataset does not exist. Fortunately, geological structures are a consequence of physical and chemical processes, so creating a synthetic dataset is feasible from the simulation of these processes. The training dataset is created from Noddy, which can be viewed as an object-based simulator. The use of advanced GANs like Least-Square GAN (LSGAN) and Wasserstein GAN allows training a deep neural network called the Generator. The Generator defines an implicit distribution of geological models. This is a function that transforms a random vector into a geomodel similar to the training dataset. However, the Generator produces unconstrained geomodels. A Bayesian approach is used in order to generate geomodels that fulfill constraints, or conditioned geomodels. Thanks to the versatility of the Bayesian approach, constraints can be of different types and quality, for instance rock type, rock orientation or geophysical data. A modified Metropolis adjusted Langevin algorithm (MALA), which is a Markov chain Monte Carlo method, enables the acquisition of conditional geomodels. Finally, the combination of MALA and the GAN allows the generation of conditioned geomodels. In addition, this approach enables handling uncertainties and to perform computation, since the final results is an implicit distribution of conditioned geomodels.

Speaker: Baptiste Rousset

Date: Wednesday 21st of February 2024, 1:15pm.

Abstract:

Like earthquakes, transient slow slip events participate in the release of accumulated strain at plate boundaries. They occur in various tectonic contexts including shallow creeping sections of strike slip faults, the brittle ductile transition of subduction zones in concurrence with tectonic tremors and the seismogenic part of subduction zones, sometimes associated with seismicity. In this talk, I will present the advantages and limits of geodesy techniques including GNSS, InSAR and tiltmeters, to characterize slow slip events in these various contexts through three case studies. The first one will be on the Izmit section of the north Anatolian Faults in Turkey, the second on the Mexico subduction zone and the third on the Sagami trough in Japan. I will finally present an ongoing project to measure the transient aseismic deformation associated with deep geothermal wells in Alsace.

Speaker: Augustin Gouy

Date: Thursday 15th of February 2024, 1:15pm.

Abstract:

In karst aquifers, groundwater flow is highly influenced by the interconnected underground cavities and conduits that form the karst network. Modeling karst flows requires the use of spatially distributed approaches accounting for these networks. Their exploration is, however, often complex, and mapping them using indirect methods such as geophysical ones has proven challenging. To overcome these limitations, stochastically simulating discrete karst networks should account for the uncertainties on conduit position and geometry. Only a few existing methods can reproduce realistic and diverse karst morphologies. We present a public C++ code, KarstNSim, for simulating discrete karst networks, that incorporates field data to generate a range of possible karst network geometries. It relies on the computation of the shortest path between the inlets and outlets of the network with the use of an anisotropic cost function defined on an n-nearest neighbor graph conformal to geological and structural heterogeneities. This cost function represents the physico-chemical processes that govern speleogenesis – such as erosion and chemical weathering – providing simplified control over the geometry of the generated networks. Our approach reproduces the vadose-phreatic partition visible in the karst networks, by generating sub-vertical conduits in the unsaturated zone and sub-horizontal ones in the saturated part. It encompasses geological parameters such as inception surfaces, fractures, permeability, and solubility of layers, along with considering the hydrological context of recharge by assigning relative weights to the inlets. A demonstration of how to use the code will be provided, covering the process from defining inputs to displaying outputs on a geomodeling software.

 
 

Speaker: Yu Zhang

Date: Friday 26th of January 2024, 1:15pm.

Abstract:

Natural gas hydrate is regarded as a potential unconventional alternative clean energy with development prospects because of its huge reserves, high calorific value, and environmental protection. The Outline of China's Medium-and Long-Term Science and Technology Development Plan (2006-2020) clearly puts forward "breaking through the safe exploitation technology of natural gas hydrate"; China's 14th Five-Year Plan and the long-term goal outline for 2035 also put forward "trial production of natural gas hydrate in South China Sea and other areas". In the process of gas hydrate exploitation, the reservoir pores are in the state of gas hydrate solid-decomposed liquid-decomposed gas coexisting and filling, showing the characteristics of "high porosity, gas-water permeability and slightly low strength"; Macroscopic performance is reservoir compaction and wellbore collapse, and microscopic performance is pore structure and gas-water permeability evolution, which directly affects wellbore stability; The above problems are bottlenecks faced by efficient exploitation of natural gas hydrate

Speaker: Guillaume Pirot

Date: Thursday 18th of January 2024, 1:15pm.

Abstract:

The mining industry faces various challenges to satisfy the increasing demand of minerals for clean energy transitions. One of them is to improve geological characterization at the stage of undercover exploration. This usually requires costly drilling operations. Can we reduce our exploration footprint and costs while reducing geological uncertainty by optimising our drilling location design? Here I propose two ways to look at this problem, based on data from the Hamersley basin, WA, Australia. One examines legacy drillholes in the area and investigate the impact of removing drillholes on the quality of geological models. The other one explores an iterative drilling optimisation approach to reduce modelled geological uncertainty, based on a synthetic case.

Speaker: Franck Sfiligoi-Taillandier

Date: Thursday 11th of January 2024, 1:15pm.

Abstract:

Les modèles Agent (ou modèles multi-agents), issus du domaine de l’Intelligence Artificielle, sont particulièrement intéressants pour la modélisation et la simulation des systèmes sociaux et sociaux-techniques. Contrairement aux approches par apprentissage (Deep learning, Machine learning…), ils passent par une modélisation et une simulation explicite et naturelle des entités constitutives des systèmes et de leurs interactions, ce qui permet de faciliter la compréhension du système et de l’explorer. Ce côté intuitif et ouvert (par opposition aux boites noires), rend ces modèles particulièrement adaptés aux approches de modélisation et de simulation participatives. La modélisation participative est une approche dans laquelle les parties prenantes sont directement impliquées dans la construction du modèle. La simulation participative renvoie à une simulation interactive dans laquelle l’utilisateur peut modifier le cours de la simulation ; cette approche est beaucoup utilisée dans le cadre des jeux sérieux. Dans cette présentation, je reviendrai sur ces différents éléments en me basant sur des applications liées à la gestion des territoires, et en essayant de vous convaincre de l’intérêt de ces approches dans un dispositif d’aide à la décision ainsi que de leur valeur scientifique.

Speaker: Simon Daout

Date: Thursday 21st of December 2023, 1:15pm.

Abstract:

In this presentation, I will present you the results obtained in a recent publication entitled: «  Along-strike variations of strain partitioning within the Apennines determined from large-scale multi-temporal InSAR analysis, https://doi.org/10.1016/j.tecto.2023.230076 ». In this paper, we produced and analyzed a large set of GPS and InSAR measurements over the Apennines (Italy), where the origin of the long-wavelength topography and the driving mechanisms of the extension are debated. Our continuous mapping of the surface displacements across the range allows to understand how the different deformation scales (fault tectonic, landslides, surface processes, hydrological loading, mantle processes) are imbricated and how faults behave in relation to driving mechanisms at the boundaries of the system. Although, I hope this presentation can be relevant from the scientific point of view of various fields (seismology, geomorphology, geodynamic, remote sensing), here, I would like to particularly focus on numerical models and the development of inversion tools to derive the spatio-temporal evolution of seismic and aseismic slip on faults.